- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 525-540.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
Propagation of light through curved graded index optical waveguides supporting an arbitrary high number of modes is investigated. The discussion is restricted to optical wave fields which are well confined within the core region and losses through radiation are neglected. Using coupled mode theory formalism, two new forms for the propagation kernel for the transverse electric (TE) wave as it travels along a curved two-dimensional waveguide are presented. One form, involving the notion of "bend" modes, is shown to be attractive from a computational point of view as it allows an efficient numerical evaluation of the optical field for sharply bent waveguides.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.211209.200710s}, url = {http://global-sci.org/intro/article_detail/cicp/7376.html} }Propagation of light through curved graded index optical waveguides supporting an arbitrary high number of modes is investigated. The discussion is restricted to optical wave fields which are well confined within the core region and losses through radiation are neglected. Using coupled mode theory formalism, two new forms for the propagation kernel for the transverse electric (TE) wave as it travels along a curved two-dimensional waveguide are presented. One form, involving the notion of "bend" modes, is shown to be attractive from a computational point of view as it allows an efficient numerical evaluation of the optical field for sharply bent waveguides.