- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 489-507.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
Our aim is to evidence new 3D composite diffractive structures whose effective permittivity tensor can exhibit very large positive or negative real eigenvalues. We use a reiterated homogenization procedure in which the first step consists in considering a bounded obstacle made of periodically disposed parallel high conducting metallic fibers of finite length and very thin cross section. As shown in [2], the resulting constitutive law is non-local. Then by reproducing periodically the same kind of obstacle at small scale, we obtain a local effective law described by a permittivity tensor that we make explicit as a function of the frequency. Due to internal resonances, the eigenvalues of this tensor have real part that change of sign and are possibly very large within some range of frequencies. Numerical simulations are shown.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.171209.110810s}, url = {http://global-sci.org/intro/article_detail/cicp/7374.html} }Our aim is to evidence new 3D composite diffractive structures whose effective permittivity tensor can exhibit very large positive or negative real eigenvalues. We use a reiterated homogenization procedure in which the first step consists in considering a bounded obstacle made of periodically disposed parallel high conducting metallic fibers of finite length and very thin cross section. As shown in [2], the resulting constitutive law is non-local. Then by reproducing periodically the same kind of obstacle at small scale, we obtain a local effective law described by a permittivity tensor that we make explicit as a function of the frequency. Due to internal resonances, the eigenvalues of this tensor have real part that change of sign and are possibly very large within some range of frequencies. Numerical simulations are shown.