- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 114-146.
Published online: 2012-11
Cited by
- BibTex
- RIS
- TXT
This paper extends the adaptive moving mesh method developed by Tang and Tang [36] to two-dimensional (2D) relativistic hydrodynamic (RHD) equations. The algorithm consists of two "independent" parts: the time evolution of the RHD equations and the (static) mesh iteration redistribution. In the first part, the RHD equations are discretized by using a high resolution finite volume scheme on the fixed but nonuniform meshes without the full characteristic decomposition of the governing equations. The second part is an iterative procedure. In each iteration, the mesh points are first redistributed, and then the cell averages of the conservative variables are remapped onto the new mesh in a conservative way. Several numerical examples are given to demonstrate the accuracy and effectiveness of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.291010.180311a}, url = {http://global-sci.org/intro/article_detail/cicp/7356.html} }This paper extends the adaptive moving mesh method developed by Tang and Tang [36] to two-dimensional (2D) relativistic hydrodynamic (RHD) equations. The algorithm consists of two "independent" parts: the time evolution of the RHD equations and the (static) mesh iteration redistribution. In the first part, the RHD equations are discretized by using a high resolution finite volume scheme on the fixed but nonuniform meshes without the full characteristic decomposition of the governing equations. The second part is an iterative procedure. In each iteration, the mesh points are first redistributed, and then the cell averages of the conservative variables are remapped onto the new mesh in a conservative way. Several numerical examples are given to demonstrate the accuracy and effectiveness of the proposed method.