- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 99-113.
Published online: 2012-11
Cited by
- BibTex
- RIS
- TXT
A higher-order compact scheme on the nine point 2-D stencil is developed for the steady stream-function vorticity form of the incompressible Navier-Stokes (NS) equations in spherical polar coordinates, which was used earlier only for the cartesian and cylindrical geometries. The steady, incompressible, viscous and axially symmetric flow past a sphere is used as a model problem. The non-linearity in the N-S equations is handled in a comprehensive manner avoiding complications in calculations. The scheme is combined with the multigrid method to enhance the convergence rate. The solutions are obtained over a non-uniform grid generated using the transformation r = eξ while maintaining a uniform grid in the computational plane. The superiority of the higher order compact scheme is clearly illustrated in comparison with upwind scheme and defect correction technique at high Reynolds numbers by taking a large domain. This is a pioneering effort, because for the first time, the fourth order accurate solutions for the problem of viscous flow past a sphere are presented here. The drag coefficient and surface pressures are calculated and compared with available experimental and theoretical results. It is observed that these values simulated over coarser grids using the present scheme are more accurate when compared to other conventional schemes. It has also been observed that the flow separation initially occurred at Re=21.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.171010.030311a}, url = {http://global-sci.org/intro/article_detail/cicp/7355.html} }A higher-order compact scheme on the nine point 2-D stencil is developed for the steady stream-function vorticity form of the incompressible Navier-Stokes (NS) equations in spherical polar coordinates, which was used earlier only for the cartesian and cylindrical geometries. The steady, incompressible, viscous and axially symmetric flow past a sphere is used as a model problem. The non-linearity in the N-S equations is handled in a comprehensive manner avoiding complications in calculations. The scheme is combined with the multigrid method to enhance the convergence rate. The solutions are obtained over a non-uniform grid generated using the transformation r = eξ while maintaining a uniform grid in the computational plane. The superiority of the higher order compact scheme is clearly illustrated in comparison with upwind scheme and defect correction technique at high Reynolds numbers by taking a large domain. This is a pioneering effort, because for the first time, the fourth order accurate solutions for the problem of viscous flow past a sphere are presented here. The drag coefficient and surface pressures are calculated and compared with available experimental and theoretical results. It is observed that these values simulated over coarser grids using the present scheme are more accurate when compared to other conventional schemes. It has also been observed that the flow separation initially occurred at Re=21.