- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 19-47.
Published online: 2012-11
Cited by
- BibTex
- RIS
- TXT
We develop a framework for constructing mixed multiscale finite volume methods for elliptic equations with multiple scales arising from flows in porous media. Some of the methods developed using the framework are already known [20]; others are new. New insight is gained for the known methods and extra flexibility is provided by the new methods. We give as an example a mixed MsFV on uniform mesh in 2-D. This method uses novel multiscale velocity basis functions that are suited for using global information, which is often needed to improve the accuracy of the multiscale simulations in the case of continuum scales with strong non-local features. The method efficiently captures the small effects on a coarse grid. We analyze the new mixed MsFV and apply it to solve two-phase flow equations in heterogeneous porous media. Numerical examples demonstrate the accuracy and efficiency of the proposed method for modeling the flows in porous media with non-separable and separable scales.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.170910.180311a}, url = {http://global-sci.org/intro/article_detail/cicp/7352.html} }We develop a framework for constructing mixed multiscale finite volume methods for elliptic equations with multiple scales arising from flows in porous media. Some of the methods developed using the framework are already known [20]; others are new. New insight is gained for the known methods and extra flexibility is provided by the new methods. We give as an example a mixed MsFV on uniform mesh in 2-D. This method uses novel multiscale velocity basis functions that are suited for using global information, which is often needed to improve the accuracy of the multiscale simulations in the case of continuum scales with strong non-local features. The method efficiently captures the small effects on a coarse grid. We analyze the new mixed MsFV and apply it to solve two-phase flow equations in heterogeneous porous media. Numerical examples demonstrate the accuracy and efficiency of the proposed method for modeling the flows in porous media with non-separable and separable scales.