- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 12 (2012), pp. 1392-1416.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
In this paper, we present the use of the orthogonal spline collocation method for the semi-discretization scheme of the one-dimensional coupled nonlinear Schrödinger equations. This method uses the Hermite basis functions, by which physical quantities are approximated with their values and derivatives associated with Gaussian points. The convergence rate with order O(h4+τ2) and the stability of the scheme are proved. Conservation properties are shown in both theory and practice. Extensive numerical experiments are presented to validate the numerical study under consideration.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.180411.090112a}, url = {http://global-sci.org/intro/article_detail/cicp/7339.html} }In this paper, we present the use of the orthogonal spline collocation method for the semi-discretization scheme of the one-dimensional coupled nonlinear Schrödinger equations. This method uses the Hermite basis functions, by which physical quantities are approximated with their values and derivatives associated with Gaussian points. The convergence rate with order O(h4+τ2) and the stability of the scheme are proved. Conservation properties are shown in both theory and practice. Extensive numerical experiments are presented to validate the numerical study under consideration.