- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 12 (2012), pp. 1359-1391.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
An algorithm for computing wavefronts, based on the high frequency approximation to the wave equation, is presented. This technique applies the level set method to underwater acoustic wavefront propagation in the time domain. The level set method allows for computation of the acoustic phase function using established numerical techniques to solve a first order transport equation to a desired order of accuracy. Traditional methods for solving the eikonal equation directly on a fixed grid limit one to only the first arrivals, so these approaches are not useful when multi-path propagation is present. Applying the level set model to the problem allows for the time domain computation of the phase function on a fixed grid, without having to restrict to first arrival times. The implementation presented has no restrictions on range dependence or direction of travel, and offers improved efficiency over solving the full wave equation which under the high frequency assumption requires a large number of grid points to resolve the highly oscillatory solutions. Boundary conditions are discussed, and an approach is suggested for producing good results in the presence of boundary reflections. An efficient method to compute the amplitude from the level set method solutions is also presented. Comparisons to analytical solutions are presented where available, and numerical results are validated by comparing results with exact solutions where available, a full wave equation solver, and with wavefronts extracted from ray tracing software.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.190311.231211a}, url = {http://global-sci.org/intro/article_detail/cicp/7338.html} }An algorithm for computing wavefronts, based on the high frequency approximation to the wave equation, is presented. This technique applies the level set method to underwater acoustic wavefront propagation in the time domain. The level set method allows for computation of the acoustic phase function using established numerical techniques to solve a first order transport equation to a desired order of accuracy. Traditional methods for solving the eikonal equation directly on a fixed grid limit one to only the first arrivals, so these approaches are not useful when multi-path propagation is present. Applying the level set model to the problem allows for the time domain computation of the phase function on a fixed grid, without having to restrict to first arrival times. The implementation presented has no restrictions on range dependence or direction of travel, and offers improved efficiency over solving the full wave equation which under the high frequency assumption requires a large number of grid points to resolve the highly oscillatory solutions. Boundary conditions are discussed, and an approach is suggested for producing good results in the presence of boundary reflections. An efficient method to compute the amplitude from the level set method solutions is also presented. Comparisons to analytical solutions are presented where available, and numerical results are validated by comparing results with exact solutions where available, a full wave equation solver, and with wavefronts extracted from ray tracing software.