- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 12 (2012), pp. 885-918.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
This paper summarizes suitable material models for creep and damage of concrete which are coupled with heat and moisture transfer. The fully coupled approach or the staggered coupling is assumed. Governing equations are spatially discretized by the finite element method and the temporal discretization is done by the generalized trapezoidal method. Systems of non-linear algebraic equations are solved by the Newton method. Development of an efficient and extensible computer code based on the C++ programming language is described. Finally, successful analyses of two real engineering problems are described.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.031110.080711s}, url = {http://global-sci.org/intro/article_detail/cicp/7318.html} }This paper summarizes suitable material models for creep and damage of concrete which are coupled with heat and moisture transfer. The fully coupled approach or the staggered coupling is assumed. Governing equations are spatially discretized by the finite element method and the temporal discretization is done by the generalized trapezoidal method. Systems of non-linear algebraic equations are solved by the Newton method. Development of an efficient and extensible computer code based on the C++ programming language is described. Finally, successful analyses of two real engineering problems are described.