- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 12 (2012), pp. 433-461.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
Many problems involving the interaction of an elastic structure and a viscous fluid can be solved by the immersed boundary (IB) method. In the IB approach to such problems, the elastic forces generated by the immersed structure are applied to the surrounding fluid, and the motion of the immersed structure is determined by the local motion of the fluid. Recently, the IB method has been extended to treat more general elasticity models that include both positional and rotational degrees of freedom. For such models, force and torque must both be applied to the fluid. The positional degrees of freedom of the immersed structure move according to the local linear velocity of the fluid, whereas the rotational degrees of freedom move according to the local angular velocity. This paper introduces a spatially adaptive, formally second-order accurate version of this generalized immersed boundary method. We use this adaptive scheme to simulate the dynamics of an elastic ring immersed in fluid. To describe the elasticity of the ring, we use an unconstrained version of Kirchhoff rod theory. We demonstrate empirically that our numerical scheme yields essentially second-order convergence rates when applied to such problems. We also study dynamical instabilities of such fluid-structure systems, and we compare numerical results produced by our method to classical analytic results from elastic rod theory.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.190211.060811s}, url = {http://global-sci.org/intro/article_detail/cicp/7298.html} }Many problems involving the interaction of an elastic structure and a viscous fluid can be solved by the immersed boundary (IB) method. In the IB approach to such problems, the elastic forces generated by the immersed structure are applied to the surrounding fluid, and the motion of the immersed structure is determined by the local motion of the fluid. Recently, the IB method has been extended to treat more general elasticity models that include both positional and rotational degrees of freedom. For such models, force and torque must both be applied to the fluid. The positional degrees of freedom of the immersed structure move according to the local linear velocity of the fluid, whereas the rotational degrees of freedom move according to the local angular velocity. This paper introduces a spatially adaptive, formally second-order accurate version of this generalized immersed boundary method. We use this adaptive scheme to simulate the dynamics of an elastic ring immersed in fluid. To describe the elasticity of the ring, we use an unconstrained version of Kirchhoff rod theory. We demonstrate empirically that our numerical scheme yields essentially second-order convergence rates when applied to such problems. We also study dynamical instabilities of such fluid-structure systems, and we compare numerical results produced by our method to classical analytic results from elastic rod theory.