- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 12 (2012), pp. 247-260.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
The concept of diffusion regulation (DR) was originally proposed by Jaisankar for traditional second order finite volume Euler solvers. This was used to decrease the inherent dissipation associated with using approximate Riemann solvers. In this paper, the above concept is extended to the high order spectral volume (SV) method. The DR formulation was used in conjunction with the Rusanov flux to handle the inviscid flux terms. Numerical experiments were conducted to compare and contrast the original and the DR formulations. These experiments demonstrated (i) retention of high order accuracy for the new formulation, (ii) higher fidelity of the DR formulation, when compared to the original scheme for all orders and (iii) straightforward extension to Navier Stokes equations, since the DR does not interfere with the discretization of the viscous fluxes. In general, the 2D numerical results are very promising and indicate that the approach has a great potential for 3D flow problems.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.270311.060711a}, url = {http://global-sci.org/intro/article_detail/cicp/7291.html} }The concept of diffusion regulation (DR) was originally proposed by Jaisankar for traditional second order finite volume Euler solvers. This was used to decrease the inherent dissipation associated with using approximate Riemann solvers. In this paper, the above concept is extended to the high order spectral volume (SV) method. The DR formulation was used in conjunction with the Rusanov flux to handle the inviscid flux terms. Numerical experiments were conducted to compare and contrast the original and the DR formulations. These experiments demonstrated (i) retention of high order accuracy for the new formulation, (ii) higher fidelity of the DR formulation, when compared to the original scheme for all orders and (iii) straightforward extension to Navier Stokes equations, since the DR does not interfere with the discretization of the viscous fluxes. In general, the 2D numerical results are very promising and indicate that the approach has a great potential for 3D flow problems.