- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 12 (2012), pp. 226-246.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
In this paper, we develop an efficient numerical method based on the boundary integral equation formulation and new version of fast multipole method to solve the boundary value problem for the stress field associated with dislocations in a finite medium. Numerical examples are presented to examine the influence from material boundaries on dislocations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.250111.210611a}, url = {http://global-sci.org/intro/article_detail/cicp/7290.html} }In this paper, we develop an efficient numerical method based on the boundary integral equation formulation and new version of fast multipole method to solve the boundary value problem for the stress field associated with dislocations in a finite medium. Numerical examples are presented to examine the influence from material boundaries on dislocations.