- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 13 (2013), pp. 1265-1291.
Published online: 2013-05
Cited by
- BibTex
- RIS
- TXT
Recently, a new differential discontinuous formulation for conservation laws named the Correction Procedure via Reconstruction (CPR) is developed, which is inspired by several other discontinuous methods such as the discontinuous Galerkin (DG), the spectral volume (SV)/spectral difference (SD) methods. All of them can be unified under the CPR formulation, which is relatively simple to implement due to its finite-difference-like framework. In this paper, a different discontinuous solution space including both polynomial and Fourier basis functions on each element is employed to compute broad-band waves. Free-parameters introduced in the Fourier bases are optimized to minimize both dispersion and dissipation errors through a wave propagation analysis. The optimization procedure is verified with a mesh resolution analysis. Numerical results are presented to demonstrate the performance of the optimized CPR formulation.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.300711.070512a}, url = {http://global-sci.org/intro/article_detail/cicp/7274.html} }Recently, a new differential discontinuous formulation for conservation laws named the Correction Procedure via Reconstruction (CPR) is developed, which is inspired by several other discontinuous methods such as the discontinuous Galerkin (DG), the spectral volume (SV)/spectral difference (SD) methods. All of them can be unified under the CPR formulation, which is relatively simple to implement due to its finite-difference-like framework. In this paper, a different discontinuous solution space including both polynomial and Fourier basis functions on each element is employed to compute broad-band waves. Free-parameters introduced in the Fourier bases are optimized to minimize both dispersion and dissipation errors through a wave propagation analysis. The optimization procedure is verified with a mesh resolution analysis. Numerical results are presented to demonstrate the performance of the optimized CPR formulation.