- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 13 (2013), pp. 1209-1226.
Published online: 2013-05
Cited by
- BibTex
- RIS
- TXT
We consider the finite element based computation of topological quantities of implicitly represented surfaces within a diffuse interface framework. Utilizing an adaptive finite element implementation with effective gradient recovery techniques, we discuss how the Euler number can be accurately computed directly from the numerically solved phase field functions or order parameters. Numerical examples and applications to the topological analysis of point clouds are also presented.
We consider the finite element based computation of topological quantities of implicitly represented surfaces within a diffuse interface framework. Utilizing an adaptive finite element implementation with effective gradient recovery techniques, we discuss how the Euler number can be accurately computed directly from the numerically solved phase field functions or order parameters. Numerical examples and applications to the topological analysis of point clouds are also presented.