- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 13 (2013), pp. 1107-1133.
Published online: 2013-08
Cited by
- BibTex
- RIS
- TXT
In this paper an explicit finite-difference time-domain scheme for solving the Maxwell's equations in non-staggered grids is presented. The proposed scheme for solving the Faraday's and Ampère's equations in a theoretical manner is aimed to preserve discrete zero-divergence for the electric and magnetic fields. The inherent local conservation laws in Maxwell's equations are also preserved discretely all the time using the explicit second-order accurate symplectic partitioned Runge-Kutta scheme. The remaining spatial derivative terms in the semi-discretized Faraday's and Ampère's equations are then discretized to provide an accurate mathematical dispersion relation equation that governs the numerical angular frequency and the wavenumbers in two space dimensions. To achieve the goal of getting the best dispersive characteristics, we propose a fourth-order accurate space centered scheme which minimizes the difference between the exact and numerical dispersion relation equations. Through the computational exercises, the proposed dual-preserving solver is computationally demonstrated to be efficient for use to predict the long-term accurate Maxwell's solutions.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.280711.230312a}, url = {http://global-sci.org/intro/article_detail/cicp/7266.html} }In this paper an explicit finite-difference time-domain scheme for solving the Maxwell's equations in non-staggered grids is presented. The proposed scheme for solving the Faraday's and Ampère's equations in a theoretical manner is aimed to preserve discrete zero-divergence for the electric and magnetic fields. The inherent local conservation laws in Maxwell's equations are also preserved discretely all the time using the explicit second-order accurate symplectic partitioned Runge-Kutta scheme. The remaining spatial derivative terms in the semi-discretized Faraday's and Ampère's equations are then discretized to provide an accurate mathematical dispersion relation equation that governs the numerical angular frequency and the wavenumbers in two space dimensions. To achieve the goal of getting the best dispersive characteristics, we propose a fourth-order accurate space centered scheme which minimizes the difference between the exact and numerical dispersion relation equations. Through the computational exercises, the proposed dual-preserving solver is computationally demonstrated to be efficient for use to predict the long-term accurate Maxwell's solutions.