- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 13 (2013), pp. 1013-1044.
Published online: 2013-08
Cited by
- BibTex
- RIS
- TXT
A new approach to high-order accuracy for the numerical solution of conservation laws introduced by Huynh and extended to simplexes by Wang and Gao is renamed CPR (correction procedure or collocation penalty via reconstruction). The CPR approach employs the differential form of the equation and accounts for the jumps in flux values at the cell boundaries by a correction procedure. In addition to being simple and economical, it unifies several existing methods including discontinuous Galerkin, staggered grid, spectral volume, and spectral difference. To discretize the diffusion terms, we use the BR2 (Bassi and Rebay), interior penalty, compact DG (CDG), and I-continuous approaches. The first three of these approaches, originally derived using the integral formulation, were recast here in the CPR framework, whereas the I-continuous scheme, originally derived for a quadrilateral mesh, was extended to a triangular mesh. Fourier stability and accuracy analyses for these schemes on quadrilateral and triangular meshes are carried out. Finally, results for the Navier-Stokes equations are shown to compare the various schemes as well as to demonstrate the capability of the CPR approach.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.020611.090312a}, url = {http://global-sci.org/intro/article_detail/cicp/7262.html} }A new approach to high-order accuracy for the numerical solution of conservation laws introduced by Huynh and extended to simplexes by Wang and Gao is renamed CPR (correction procedure or collocation penalty via reconstruction). The CPR approach employs the differential form of the equation and accounts for the jumps in flux values at the cell boundaries by a correction procedure. In addition to being simple and economical, it unifies several existing methods including discontinuous Galerkin, staggered grid, spectral volume, and spectral difference. To discretize the diffusion terms, we use the BR2 (Bassi and Rebay), interior penalty, compact DG (CDG), and I-continuous approaches. The first three of these approaches, originally derived using the integral formulation, were recast here in the CPR framework, whereas the I-continuous scheme, originally derived for a quadrilateral mesh, was extended to a triangular mesh. Fourier stability and accuracy analyses for these schemes on quadrilateral and triangular meshes are carried out. Finally, results for the Navier-Stokes equations are shown to compare the various schemes as well as to demonstrate the capability of the CPR approach.