- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 13 (2013), pp. 823-834.
Published online: 2013-03
Cited by
- BibTex
- RIS
- TXT
This work is concerned with the modelling of the interaction of fluid flow with flexibly supported rigid bodies. The fluid flow is modelled by Lattice-Boltzmann Method, coupled to a set of ordinary differential equations describing the dynamics of the solid body in terms its elastic and damping properties. The time discretization of the body dynamics is performed via the Time Discontinuous Galerkin Method. Several numerical examples are presented and highlight the robustness and efficiency of the proposed methodology, by means of comparisons with previously published results. The examples show that the present fluid-structure method is able to capture vortex-induced oscillations of flexibly-supported rigid body.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.141111.201211s}, url = {http://global-sci.org/intro/article_detail/cicp/7252.html} }This work is concerned with the modelling of the interaction of fluid flow with flexibly supported rigid bodies. The fluid flow is modelled by Lattice-Boltzmann Method, coupled to a set of ordinary differential equations describing the dynamics of the solid body in terms its elastic and damping properties. The time discretization of the body dynamics is performed via the Time Discontinuous Galerkin Method. Several numerical examples are presented and highlight the robustness and efficiency of the proposed methodology, by means of comparisons with previously published results. The examples show that the present fluid-structure method is able to capture vortex-induced oscillations of flexibly-supported rigid body.