- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 13 (2013), pp. 238-255.
Published online: 2013-01
Cited by
- BibTex
- RIS
- TXT
The structural and functional description of protein-protein complexes and their comprehension is a key concept, not only to increase the scientific knowledge in basic terms but also for the application to the biomedical and pharmaceutical industry. The binding association between proteins is nowadays attribute to a few key residues at the interface – the hot-spots. The complex between the RNase inhibitor (RI) and RNaseA protein provides an excellent system to study the role of the functional epitope as it is essential in various molecular recognition processes and constitute one of the tightest complexes known. An energetic pattern of the interface is accomplished by computational alanine scanning mutagenesis and a dynamical characterization is accomplished by a detailed study of the molecular dynamical simulations. A special emphasis is given to the role of solvation across the interface and the shielding of warm- and hot-spots from water.
The structural and functional description of protein-protein complexes and their comprehension is a key concept, not only to increase the scientific knowledge in basic terms but also for the application to the biomedical and pharmaceutical industry. The binding association between proteins is nowadays attribute to a few key residues at the interface – the hot-spots. The complex between the RNase inhibitor (RI) and RNaseA protein provides an excellent system to study the role of the functional epitope as it is essential in various molecular recognition processes and constitute one of the tightest complexes known. An energetic pattern of the interface is accomplished by computational alanine scanning mutagenesis and a dynamical characterization is accomplished by a detailed study of the molecular dynamical simulations. A special emphasis is given to the role of solvation across the interface and the shielding of warm- and hot-spots from water.