- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 13 (2013), pp. 195-206.
Published online: 2013-01
Cited by
- BibTex
- RIS
- TXT
Stochastic walk-on-spheres (WOS) algorithms for solving the linearized Poisson-Boltzmann equation (LPBE) provide several attractive features not available in traditional deterministic solvers: Gaussian error bars can be computed easily, the algorithm is readily parallelized and requires minimal memory and multiple solvent environments can be accounted for by reweighting trajectories. However, previouslyreported computational times of these Monte Carlo methods were not competitive with existing deterministic numerical methods. The present paper demonstrates a series of numerical optimizations that collectively make the computational time of these Monte Carlo LPBE solvers competitive with deterministic methods. The optimization techniques used are to ensure that each atom’s contribution to the variance of the electrostatic solvation free energy is the same, to optimize the bias-generating parameters in the algorithm and to use an epsilon-approximate rather than exact nearest-neighbor search when determining the size of the next step in the Brownian motion when outside the molecule.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.220711.041011s}, url = {http://global-sci.org/intro/article_detail/cicp/7218.html} }Stochastic walk-on-spheres (WOS) algorithms for solving the linearized Poisson-Boltzmann equation (LPBE) provide several attractive features not available in traditional deterministic solvers: Gaussian error bars can be computed easily, the algorithm is readily parallelized and requires minimal memory and multiple solvent environments can be accounted for by reweighting trajectories. However, previouslyreported computational times of these Monte Carlo methods were not competitive with existing deterministic numerical methods. The present paper demonstrates a series of numerical optimizations that collectively make the computational time of these Monte Carlo LPBE solvers competitive with deterministic methods. The optimization techniques used are to ensure that each atom’s contribution to the variance of the electrostatic solvation free energy is the same, to optimize the bias-generating parameters in the algorithm and to use an epsilon-approximate rather than exact nearest-neighbor search when determining the size of the next step in the Brownian motion when outside the molecule.