- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 13 (2013), pp. 174-194.
Published online: 2013-01
Cited by
- BibTex
- RIS
- TXT
A nonlocal continuum electrostatic model, defined as integro-differential equations, can significantly improve the classic Poisson dielectric model, but is too costly to be applied to large protein simulations. To sharply reduce the model's complexity, a modified nonlocal continuum electrostatic model is presented in this paper for a protein immersed in water solvent, and then transformed equivalently as a system of partial differential equations. By using this new differential equation system, analytical solutions are derived for three different nonlocal ionic Born models, where a monoatomic ion is treated as a dielectric continuum ball with point charge either in the center or uniformly distributed on the surface of the ball. These solutions are analytically verified to satisfy the original integro-differential equations, thereby, validating the new differential equation system.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.170811.211011s}, url = {http://global-sci.org/intro/article_detail/cicp/7217.html} }A nonlocal continuum electrostatic model, defined as integro-differential equations, can significantly improve the classic Poisson dielectric model, but is too costly to be applied to large protein simulations. To sharply reduce the model's complexity, a modified nonlocal continuum electrostatic model is presented in this paper for a protein immersed in water solvent, and then transformed equivalently as a system of partial differential equations. By using this new differential equation system, analytical solutions are derived for three different nonlocal ionic Born models, where a monoatomic ion is treated as a dielectric continuum ball with point charge either in the center or uniformly distributed on the surface of the ball. These solutions are analytically verified to satisfy the original integro-differential equations, thereby, validating the new differential equation system.