- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 14 (2013), pp. 1347-1371.
Published online: 2013-11
Cited by
- BibTex
- RIS
- TXT
In this paper, a gas kinetic scheme for the compressible multicomponent flows is presented by making use of two-species BGK model in [A. D. Kotelnikov and D. C. Montgomery, A Kinetic Method for Computing Inhomogeneous Fluid Behavior, J. Comput. Phys. 134 (1997) 364-388]. Different from the conventional BGK model, the collisions between different species are taken into consideration. Based on the Chapman-Enskog expansion, the corresponding macroscopic equations are derived from this two-species model. Because of the relaxation terms in the governing equations, the method of operator splitting is applied. In the hyperbolic part, the integral solutions of the BGK equations are used to construct the numerical fluxes at the cell interface in the framework of finite volume method. Numerical tests are presented in this paper to validate the current approach for the compressible multicomponent flows. The theoretical analysis on the spurious oscillations at the interface is also presented.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.280312.210313a}, url = {http://global-sci.org/intro/article_detail/cicp/7205.html} }In this paper, a gas kinetic scheme for the compressible multicomponent flows is presented by making use of two-species BGK model in [A. D. Kotelnikov and D. C. Montgomery, A Kinetic Method for Computing Inhomogeneous Fluid Behavior, J. Comput. Phys. 134 (1997) 364-388]. Different from the conventional BGK model, the collisions between different species are taken into consideration. Based on the Chapman-Enskog expansion, the corresponding macroscopic equations are derived from this two-species model. Because of the relaxation terms in the governing equations, the method of operator splitting is applied. In the hyperbolic part, the integral solutions of the BGK equations are used to construct the numerical fluxes at the cell interface in the framework of finite volume method. Numerical tests are presented in this paper to validate the current approach for the compressible multicomponent flows. The theoretical analysis on the spurious oscillations at the interface is also presented.