- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 14 (2013), pp. 1304-1321.
Published online: 2013-11
Cited by
- BibTex
- RIS
- TXT
A novel method for boundary constrained tetrahedral mesh generation is proposed based on Advancing Front Technique (AFT) and conforming Delaunay triangulation. Given a triangulated surface mesh, AFT is firstly applied to mesh several layers of elements adjacent to the boundary. The rest of the domain is then meshed by the conforming Delaunay triangulation. The non-conformal interface between two parts of meshes is adjusted. Mesh refinement and mesh optimization are then preformed to obtain a more reasonable-sized mesh with better quality. Robustness and quality of the proposed method is shown. Convergence proof of each stage as well as the whole algorithm is provided. Various numerical examples are included as well as the quality of the meshes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.030612.010313a}, url = {http://global-sci.org/intro/article_detail/cicp/7203.html} }A novel method for boundary constrained tetrahedral mesh generation is proposed based on Advancing Front Technique (AFT) and conforming Delaunay triangulation. Given a triangulated surface mesh, AFT is firstly applied to mesh several layers of elements adjacent to the boundary. The rest of the domain is then meshed by the conforming Delaunay triangulation. The non-conformal interface between two parts of meshes is adjusted. Mesh refinement and mesh optimization are then preformed to obtain a more reasonable-sized mesh with better quality. Robustness and quality of the proposed method is shown. Convergence proof of each stage as well as the whole algorithm is provided. Various numerical examples are included as well as the quality of the meshes.