- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 14 (2013), pp. 1027-1057.
Published online: 2013-10
Cited by
- BibTex
- RIS
- TXT
In this paper a second-order two-scale (SOTS) analysis method is developed for a static heat conductive problem in a periodical porous domain with radiation boundary condition on the surfaces of cavities. By using asymptotic expansion for the temperature field and a proper regularity assumption on the macroscopic scale, the cell problem, effective material coefficients, homogenization problem, first-order correctors and second-order correctors are obtained successively. The characteristics of the asymptotic model is the coupling of the cell problems with the homogenization temperature field due to the nonlinearity and nonlocality of the radiation boundary condition. The error estimation is also obtained for the original solution and the SOTS's approximation solution. Finally the corresponding finite element algorithms are developed and a simple numerical example is presented.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.290612.180113a}, url = {http://global-sci.org/intro/article_detail/cicp/7191.html} }In this paper a second-order two-scale (SOTS) analysis method is developed for a static heat conductive problem in a periodical porous domain with radiation boundary condition on the surfaces of cavities. By using asymptotic expansion for the temperature field and a proper regularity assumption on the macroscopic scale, the cell problem, effective material coefficients, homogenization problem, first-order correctors and second-order correctors are obtained successively. The characteristics of the asymptotic model is the coupling of the cell problems with the homogenization temperature field due to the nonlinearity and nonlocality of the radiation boundary condition. The error estimation is also obtained for the original solution and the SOTS's approximation solution. Finally the corresponding finite element algorithms are developed and a simple numerical example is presented.