- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 14 (2013), pp. 242-264.
Published online: 2014-07
Cited by
- BibTex
- RIS
- TXT
An accurate and direct algorithm for solving the semiclassical Boltzmann equation with relaxation time approximation in phase space is presented for parallel treatment of rarefied gas flows of particles of three statistics. The discrete ordinate method is first applied to discretize the velocity space of the distribution function to render a set of scalar conservation laws with source term. The high order weighted essentially non-oscillatory scheme is then implemented to capture the time evolution of the discretized velocity distribution function in physical space and time. The method is developed for two space dimensions and implemented on gas particles that obey the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Computational examples in one- and two-dimensional initial value problems of rarefied gas flows are presented and the results indicating good resolution of the main flow features can be achieved. Flows of wide range of relaxation times and Knudsen numbers covering different flow regimes are computed to validate the robustness of the method. The recovery of quantum statistics to the classical limit is also tested for small fugacity values.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.290112.030812a}, url = {http://global-sci.org/intro/article_detail/cicp/7158.html} }An accurate and direct algorithm for solving the semiclassical Boltzmann equation with relaxation time approximation in phase space is presented for parallel treatment of rarefied gas flows of particles of three statistics. The discrete ordinate method is first applied to discretize the velocity space of the distribution function to render a set of scalar conservation laws with source term. The high order weighted essentially non-oscillatory scheme is then implemented to capture the time evolution of the discretized velocity distribution function in physical space and time. The method is developed for two space dimensions and implemented on gas particles that obey the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Computational examples in one- and two-dimensional initial value problems of rarefied gas flows are presented and the results indicating good resolution of the main flow features can be achieved. Flows of wide range of relaxation times and Knudsen numbers covering different flow regimes are computed to validate the robustness of the method. The recovery of quantum statistics to the classical limit is also tested for small fugacity values.