- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 15 (2014), pp. 1431-1460.
Published online: 2014-05
Cited by
- BibTex
- RIS
- TXT
This paper concerns the electromagnetic scattering by arbitrary shaped three dimensional imperfectly conducting objects modeled with non-constant Leontovitch impedance boundary condition. It has two objectives. Firstly, the intrinsically well-conditioned integral equation (noted GCSIE) proposed in [30] is described focusing on its discretization. Secondly, we highlight the potential of this method by comparison with two other methods, the first being a two currents formulation in which the impedance condition is implicitly imposed and whose the convergence is quasi-optimal for Lipschitz polyhedron, the second being a CFIE-like formulation [14]. In particular, we prove that the new approach is less costly in term of CPU time and gives a more accurate solution than that obtained from the CFIE formulation. Finally, as expected, it is demonstrated that no preconditioner is needed for this formulation.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.250313.281013a}, url = {http://global-sci.org/intro/article_detail/cicp/7144.html} }This paper concerns the electromagnetic scattering by arbitrary shaped three dimensional imperfectly conducting objects modeled with non-constant Leontovitch impedance boundary condition. It has two objectives. Firstly, the intrinsically well-conditioned integral equation (noted GCSIE) proposed in [30] is described focusing on its discretization. Secondly, we highlight the potential of this method by comparison with two other methods, the first being a two currents formulation in which the impedance condition is implicitly imposed and whose the convergence is quasi-optimal for Lipschitz polyhedron, the second being a CFIE-like formulation [14]. In particular, we prove that the new approach is less costly in term of CPU time and gives a more accurate solution than that obtained from the CFIE formulation. Finally, as expected, it is demonstrated that no preconditioner is needed for this formulation.