- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 15 (2014), pp. 1091-1107.
Published online: 2014-04
Cited by
- BibTex
- RIS
- TXT
In this paper we develop a conservative local discontinuous Galerkin (LDG) method for the Schrödinger-Korteweg-de Vries (Sch-KdV) system, which arises in various physical contexts as a model for the interaction of long and short nonlinear waves. Conservative quantities in the discrete version of the number of plasmons, energy of the oscillations and the number of particles are proved for the LDG scheme of the Sch-KdV system. Semi-implicit time discretization is adopted to relax the time step constraint from the high order spatial derivatives. Numerical results for accuracy tests of stationary traveling soliton, and the collision of solitons are shown. Numerical experiments illustrate the accuracy and capability of the method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.140313.160813s}, url = {http://global-sci.org/intro/article_detail/cicp/7129.html} }In this paper we develop a conservative local discontinuous Galerkin (LDG) method for the Schrödinger-Korteweg-de Vries (Sch-KdV) system, which arises in various physical contexts as a model for the interaction of long and short nonlinear waves. Conservative quantities in the discrete version of the number of plasmons, energy of the oscillations and the number of particles are proved for the LDG scheme of the Sch-KdV system. Semi-implicit time discretization is adopted to relax the time step constraint from the high order spatial derivatives. Numerical results for accuracy tests of stationary traveling soliton, and the collision of solitons are shown. Numerical experiments illustrate the accuracy and capability of the method.