- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 15 (2014), pp. 853-894.
Published online: 2014-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
Feynman's path integral reformulates the quantum Schrödinger differential equation to be an integral equation. It has been being widely used to compute internuclear quantum-statistical effects on many-body molecular systems. In this Review, the molecular Schrödinger equation will first be introduced, together with the Born-Oppenheimer approximation that decouples electronic and internuclear motions. Some effective semiclassical potentials, e.g., centroid potential, which are all formulated in terms of Feynman's path integral, will be discussed and compared. These semiclassical potentials can be used to directly calculate the quantum canonical partition function without individual Schrödinger's energy eigenvalues. As a result, path integrations are conventionally performed with Monte Carlo and molecular dynamics sampling techniques. To complement these techniques, we will examine how Kleinert's variational perturbation (KP) theory can provide a complete theoretical foundation for developing non-sampling/non-stochastic methods to systematically calculate centroid potential. To enable the powerful KP theory to be practical for many-body molecular systems, we have proposed a new path-integral method: automated integration-free path-integral (AIF-PI) method. Due to the integration-free and computationally inexpensive characteristics of our AIF-PI method, we have used it to perform ab initio path-integral calculations of kinetic isotope effects on proton-transfer and RNA-related phosphoryl-transfer chemical reactions. The computational procedure of using our AIF-PI method, along with the features of our new centroid path-integral theory at the minimum of the absolute-zero energy (AMAZE), are also highlighted in this review.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.140313.070513s}, url = {http://global-sci.org/intro/article_detail/cicp/7118.html} }Feynman's path integral reformulates the quantum Schrödinger differential equation to be an integral equation. It has been being widely used to compute internuclear quantum-statistical effects on many-body molecular systems. In this Review, the molecular Schrödinger equation will first be introduced, together with the Born-Oppenheimer approximation that decouples electronic and internuclear motions. Some effective semiclassical potentials, e.g., centroid potential, which are all formulated in terms of Feynman's path integral, will be discussed and compared. These semiclassical potentials can be used to directly calculate the quantum canonical partition function without individual Schrödinger's energy eigenvalues. As a result, path integrations are conventionally performed with Monte Carlo and molecular dynamics sampling techniques. To complement these techniques, we will examine how Kleinert's variational perturbation (KP) theory can provide a complete theoretical foundation for developing non-sampling/non-stochastic methods to systematically calculate centroid potential. To enable the powerful KP theory to be practical for many-body molecular systems, we have proposed a new path-integral method: automated integration-free path-integral (AIF-PI) method. Due to the integration-free and computationally inexpensive characteristics of our AIF-PI method, we have used it to perform ab initio path-integral calculations of kinetic isotope effects on proton-transfer and RNA-related phosphoryl-transfer chemical reactions. The computational procedure of using our AIF-PI method, along with the features of our new centroid path-integral theory at the minimum of the absolute-zero energy (AMAZE), are also highlighted in this review.