- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 15 (2014), pp. 692-711.
Published online: 2014-03
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a wavelet collocation splitting (WCS) method, and a Fourier pseudospectral splitting (FPSS) method as comparison, for solving one-dimensional and two-dimensional Schrödinger equations with variable coefficients in quantum mechanics. The two methods can preserve the intrinsic properties of original problems as much as possible. The splitting technique increases the computational efficiency. Meanwhile, the error estimation and some conservative properties are investigated. It is proved to preserve the charge conservation exactly. The global energy and momentum conservation laws can be preserved under several conditions. Numerical experiments are conducted during long time computations to show the performances of the proposed methods and verify the theoretical analysis.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.120313.020813a}, url = {http://global-sci.org/intro/article_detail/cicp/7111.html} }In this paper, we propose a wavelet collocation splitting (WCS) method, and a Fourier pseudospectral splitting (FPSS) method as comparison, for solving one-dimensional and two-dimensional Schrödinger equations with variable coefficients in quantum mechanics. The two methods can preserve the intrinsic properties of original problems as much as possible. The splitting technique increases the computational efficiency. Meanwhile, the error estimation and some conservative properties are investigated. It is proved to preserve the charge conservation exactly. The global energy and momentum conservation laws can be preserved under several conditions. Numerical experiments are conducted during long time computations to show the performances of the proposed methods and verify the theoretical analysis.