- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 15 (2014), pp. 422-450.
Published online: 2014-02
Cited by
- BibTex
- RIS
- TXT
In plasma physics domain, the electron transport is described with the Fokker-Planck-Landau equation. The direct numerical solution of the kinetic equation is usually intractable due to the large number of independent variables. That is why we propose in this paper a new model whose derivation is based on an angular closure in the phase space and retains only the energy of particles as kinetic dimension. To find a solution compatible with physics conditions, the closure of the moment system is obtained under a minimum entropy principle. This model is proved to satisfy the fundamental properties like a H theorem. Moreover, an entropic discretization in the velocity variable is proposed on the semi-discrete model. Finally, we validate on numerical test cases the fundamental properties of the full discrete model.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.050612.030513a}, url = {http://global-sci.org/intro/article_detail/cicp/7100.html} }In plasma physics domain, the electron transport is described with the Fokker-Planck-Landau equation. The direct numerical solution of the kinetic equation is usually intractable due to the large number of independent variables. That is why we propose in this paper a new model whose derivation is based on an angular closure in the phase space and retains only the energy of particles as kinetic dimension. To find a solution compatible with physics conditions, the closure of the moment system is obtained under a minimum entropy principle. This model is proved to satisfy the fundamental properties like a H theorem. Moreover, an entropic discretization in the velocity variable is proposed on the semi-discrete model. Finally, we validate on numerical test cases the fundamental properties of the full discrete model.