- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 15 (2014), pp. 179-205.
Published online: 2014-01
Cited by
- BibTex
- RIS
- TXT
We investigate connections between nonlocal continuum models and molecular dynamics. A continuous upscaling of molecular dynamics models of the form of the embedded-atom model is presented, providing means for simulating molecular dynamics systems at greatly reduced cost. Results are presented for structured and structureless material models, supported by computational experiments. The nonlocal continuum models are shown to be instances of the state-based peridynamics theory. Connections relating multibody peridynamic models and upscaled nonlocal continuum models are derived.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.081211.300413a}, url = {http://global-sci.org/intro/article_detail/cicp/7092.html} }We investigate connections between nonlocal continuum models and molecular dynamics. A continuous upscaling of molecular dynamics models of the form of the embedded-atom model is presented, providing means for simulating molecular dynamics systems at greatly reduced cost. Results are presented for structured and structureless material models, supported by computational experiments. The nonlocal continuum models are shown to be instances of the state-based peridynamics theory. Connections relating multibody peridynamic models and upscaled nonlocal continuum models are derived.