- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 16 (2014), pp. 1181-1200.
Published online: 2014-11
Cited by
- BibTex
- RIS
- TXT
A new approach for reducing error of the volume penalization method is proposed. The mask function is modified by shifting the interface between solid and fluid by $√νη$ toward the fluid region, where ν and η are the viscosity and the permeability, respectively. The shift length $√νη$ is derived from the analytical solution of the one-dimensional diffusion equation with a penalization term. The effect of the error reduction is verified numerically for the one-dimensional diffusion equation, Burgers' equation, and the two-dimensional Navier-Stokes equations. The results show that the numerical error is reduced except in the vicinity of the interface showing overall second-order accuracy, while it converges to a non-zero constant value as the number of grid points increases for the original mask function. However, the new approach is effective when the grid resolution is sufficiently high so that the boundary layer, whose width is proportional to $√νη$, is resolved. Hence, the approach should be used when an appropriate combination of ν and η is chosen with a given numerical grid.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.220513.070514a}, url = {http://global-sci.org/intro/article_detail/cicp/7077.html} }A new approach for reducing error of the volume penalization method is proposed. The mask function is modified by shifting the interface between solid and fluid by $√νη$ toward the fluid region, where ν and η are the viscosity and the permeability, respectively. The shift length $√νη$ is derived from the analytical solution of the one-dimensional diffusion equation with a penalization term. The effect of the error reduction is verified numerically for the one-dimensional diffusion equation, Burgers' equation, and the two-dimensional Navier-Stokes equations. The results show that the numerical error is reduced except in the vicinity of the interface showing overall second-order accuracy, while it converges to a non-zero constant value as the number of grid points increases for the original mask function. However, the new approach is effective when the grid resolution is sufficiently high so that the boundary layer, whose width is proportional to $√νη$, is resolved. Hence, the approach should be used when an appropriate combination of ν and η is chosen with a given numerical grid.