- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 16 (2014), pp. 632-674.
Published online: 2014-12
Cited by
- BibTex
- RIS
- TXT
Several recently developed AUSM-family numerical flux functions (SLAU, SLAU2, AUSM+-up2, and AUSMPW+) have been successfully extended to compute compressible multiphase flows, based on the stratified flow model concept, by following two previous works: one by M.-S. Liou, C.-H. Chang, L. Nguyen, and T.G. Theofanous [AIAA J. 46:2345-2356, 2008], in which AUSM+-up was used entirely, and the other by C.-H. Chang, and M.-S. Liou [J. Comput. Phys. 225:840-873, 2007], in which the exact Riemann solver was combined into AUSM+-up at the phase interface. Through an extensive survey by comparing flux functions, the following are found: (1) AUSM+-up with dissipation parameters of Kp and Ku equal to 0.5 or greater, AUSMPW+, SLAU2, AUSM+-up2, and SLAU can be used to solve benchmark problems, including a shock/water-droplet interaction; (2) SLAU shows oscillatory behaviors [though not as catastrophic as those of AUSM+ (a special case of AUSM+-up with Kp=Ku=0)] due to insufficient dissipation arising from its ideal-gas-based dissipation term; and (3) when combined with the exact Riemann solver, AUSM+-up (Kp=Ku=1), SLAU2, and AUSMPW+ are applicable to more challenging problems with high pressure ratios.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.020813.190214a}, url = {http://global-sci.org/intro/article_detail/cicp/7057.html} }Several recently developed AUSM-family numerical flux functions (SLAU, SLAU2, AUSM+-up2, and AUSMPW+) have been successfully extended to compute compressible multiphase flows, based on the stratified flow model concept, by following two previous works: one by M.-S. Liou, C.-H. Chang, L. Nguyen, and T.G. Theofanous [AIAA J. 46:2345-2356, 2008], in which AUSM+-up was used entirely, and the other by C.-H. Chang, and M.-S. Liou [J. Comput. Phys. 225:840-873, 2007], in which the exact Riemann solver was combined into AUSM+-up at the phase interface. Through an extensive survey by comparing flux functions, the following are found: (1) AUSM+-up with dissipation parameters of Kp and Ku equal to 0.5 or greater, AUSMPW+, SLAU2, AUSM+-up2, and SLAU can be used to solve benchmark problems, including a shock/water-droplet interaction; (2) SLAU shows oscillatory behaviors [though not as catastrophic as those of AUSM+ (a special case of AUSM+-up with Kp=Ku=0)] due to insufficient dissipation arising from its ideal-gas-based dissipation term; and (3) when combined with the exact Riemann solver, AUSM+-up (Kp=Ku=1), SLAU2, and AUSMPW+ are applicable to more challenging problems with high pressure ratios.