- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 16 (2014), pp. 365-381.
Published online: 2014-08
Cited by
- BibTex
- RIS
- TXT
In this work, we concern with the numerical comparison between different kinds of design points in least square (LS) approach on polynomial spaces. Such a topic is motivated by uncertainty quantification (UQ). Three kinds of design points are considered, which are the Sparse Grid (SG) points, the Monte Carlo (MC) points and the Quasi Monte Carlo (QMC) points. We focus on three aspects during the comparison: (i) the convergence properties; (ii) the stability, i.e. the properties of the resulting condition number of the design matrix; (iii) the robustness when numerical noises are present in function values. Several classical high dimensional functions together with a random ODE model are tested. It is shown numerically that (i) neither the MC sampling nor the QMC sampling introduces the low convergence rate, namely, the approach achieves high order convergence rate for all cases provided that the underlying functions admit certain regularity and enough design points are used; (ii)The use of SG points admits better convergence properties only for very low dimensional problems (say d ≤ 2); (iii)The QMC points, being deterministic, seem to be a good choice for higher dimensional problems not only for better convergence properties but also in the stability point of view.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.130813.060214a}, url = {http://global-sci.org/intro/article_detail/cicp/7046.html} }In this work, we concern with the numerical comparison between different kinds of design points in least square (LS) approach on polynomial spaces. Such a topic is motivated by uncertainty quantification (UQ). Three kinds of design points are considered, which are the Sparse Grid (SG) points, the Monte Carlo (MC) points and the Quasi Monte Carlo (QMC) points. We focus on three aspects during the comparison: (i) the convergence properties; (ii) the stability, i.e. the properties of the resulting condition number of the design matrix; (iii) the robustness when numerical noises are present in function values. Several classical high dimensional functions together with a random ODE model are tested. It is shown numerically that (i) neither the MC sampling nor the QMC sampling introduces the low convergence rate, namely, the approach achieves high order convergence rate for all cases provided that the underlying functions admit certain regularity and enough design points are used; (ii)The use of SG points admits better convergence properties only for very low dimensional problems (say d ≤ 2); (iii)The QMC points, being deterministic, seem to be a good choice for higher dimensional problems not only for better convergence properties but also in the stability point of view.