- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 37 (2025), pp. 701-739.
Published online: 2025-03
Cited by
- BibTex
- RIS
- TXT
The article discusses a nonlinear system that is dependent on time and coupled by incompressible fluid and porous media flow. Treating Darcy flow as dual-mixed form, we propose a variational formulation and prove the well-posedness of weak solutions. The discretization of domain is accomplished using a triangular mesh, with the lowest order Raviart-Thomas element utilized for Darcy equations and Bernardi-Raugel element used for Navier-Stokes equations. Using the mortar method, we construct the spaces from which numerical solutions are sought. Based on backward Euler method, we establish a fully discrete algorithm. At each single time level, the first-order convergence is demonstrated through the use of the Gronwall inequality. Numerical experiments are provided to illustrate the algorithm’s effectiveness in approximating solutions.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0009}, url = {http://global-sci.org/intro/article_detail/cicp/23919.html} }The article discusses a nonlinear system that is dependent on time and coupled by incompressible fluid and porous media flow. Treating Darcy flow as dual-mixed form, we propose a variational formulation and prove the well-posedness of weak solutions. The discretization of domain is accomplished using a triangular mesh, with the lowest order Raviart-Thomas element utilized for Darcy equations and Bernardi-Raugel element used for Navier-Stokes equations. Using the mortar method, we construct the spaces from which numerical solutions are sought. Based on backward Euler method, we establish a fully discrete algorithm. At each single time level, the first-order convergence is demonstrated through the use of the Gronwall inequality. Numerical experiments are provided to illustrate the algorithm’s effectiveness in approximating solutions.