- Journal Home
- Volume 37 - 2025
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 37 (2025), pp. 353-382.
Published online: 2025-02
Cited by
- BibTex
- RIS
- TXT
A deep learning-based computational method is proposed for soft matter dynamics – the deep Onsager-Machlup method (DOMM). It combines the brute forces of deep neural networks (DNNs) with the fundamental physics principle – Onsager-Machlup variational principle (OMVP). In the DOMM, the trial solution to the dynamics is constructed by DNNs that allow us to explore a rich and complex set of admissible functions. It outperforms the Ritz-type variational method where one has to impose carefully-chosen trial functions. This capability endows the DOMM with the potential to solve rather complex problems in soft matter dynamics that involve multiple physics with multiple slow variables, multiple scales, and multiple dissipative processes. Actually, the DOMM can be regarded as an extension of the deep Ritz method (DRM) developed by E and Yu that uses DNNs to solve static problems in physics. In this work, as the first step, we focus on the validation of the DOMM as a useful computational method by using it to solve several typical soft matter dynamic problems: particle diffusion in dilute solutions, and two-phase dynamics with and without hydrodynamics. The predicted results agree very well with the analytical solution or numerical solution from traditional computational methods. These results show the accuracy and convergence of DOMM and justify it as an alternative computational method for solving soft matter dynamics.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0294}, url = {http://global-sci.org/intro/article_detail/cicp/23867.html} }A deep learning-based computational method is proposed for soft matter dynamics – the deep Onsager-Machlup method (DOMM). It combines the brute forces of deep neural networks (DNNs) with the fundamental physics principle – Onsager-Machlup variational principle (OMVP). In the DOMM, the trial solution to the dynamics is constructed by DNNs that allow us to explore a rich and complex set of admissible functions. It outperforms the Ritz-type variational method where one has to impose carefully-chosen trial functions. This capability endows the DOMM with the potential to solve rather complex problems in soft matter dynamics that involve multiple physics with multiple slow variables, multiple scales, and multiple dissipative processes. Actually, the DOMM can be regarded as an extension of the deep Ritz method (DRM) developed by E and Yu that uses DNNs to solve static problems in physics. In this work, as the first step, we focus on the validation of the DOMM as a useful computational method by using it to solve several typical soft matter dynamic problems: particle diffusion in dilute solutions, and two-phase dynamics with and without hydrodynamics. The predicted results agree very well with the analytical solution or numerical solution from traditional computational methods. These results show the accuracy and convergence of DOMM and justify it as an alternative computational method for solving soft matter dynamics.