- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 36 (2024), pp. 1378-1410.
Published online: 2024-12
Cited by
- BibTex
- RIS
- TXT
Nonlocality brings many challenges to the implementation of finite element methods (FEM) for nonlocal problems, such as a large number of neighborhood query operations being invoked on the meshes. Besides, the interactions are usually limited to Euclidean balls, so direct numerical integrals often introduce numerical errors. The issues of interactions between the ball and finite elements have to be carefully dealt with, such as using ball approximation strategies. In this paper, an efficient representation and construction methods for approximate balls are presented based on the combinatorial map, and an efficient parallel algorithm is also designed for the assembly of nonlocal linear systems. Specifically, a new ball approximation method based on Monte Carlo integrals, i.e., the fullcaps method, is also proposed to compute numerical integrals over the intersection region of an element with the ball.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0210}, url = {http://global-sci.org/intro/article_detail/cicp/23612.html} }Nonlocality brings many challenges to the implementation of finite element methods (FEM) for nonlocal problems, such as a large number of neighborhood query operations being invoked on the meshes. Besides, the interactions are usually limited to Euclidean balls, so direct numerical integrals often introduce numerical errors. The issues of interactions between the ball and finite elements have to be carefully dealt with, such as using ball approximation strategies. In this paper, an efficient representation and construction methods for approximate balls are presented based on the combinatorial map, and an efficient parallel algorithm is also designed for the assembly of nonlocal linear systems. Specifically, a new ball approximation method based on Monte Carlo integrals, i.e., the fullcaps method, is also proposed to compute numerical integrals over the intersection region of an element with the ball.