- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 36 (2024), pp. 711-780.
Published online: 2024-10
Cited by
- BibTex
- RIS
- TXT
The momentum correction coefficient in one-dimensional blood flow models is related to the prescribed velocity profile. The exact solution of the Riemann problem for the one-dimensional blood flow equations has been previously studied only for a momentum correction coefficient equal to one (corresponding to a flat velocity profile, i.e. an inviscid fluid). In this paper we solve exactly the Riemann problem for the non-linear hyperbolic one-dimensional blood flow equations with a general constant momentum correction coefficient and a tube law that allows to describe both arteries and veins with continuous or discontinuous mechanical and geometrical properties. In the case of discontinuous properties, only the subsonic regime is considered. We propose a numerical procedure to compute the obtained exact solution and finally we validate it numerically, by comparing exact solutions to those obtained with well-known, first order, numerical schemes on a carefully designed set of test problems. A detailed knowledge about this problem will allow to determine coupling and boundary conditions arising when these models are applied on networks of vessels, ensuring full consistency with the underlying one-dimensional blood flow model without resorting to linearization techniques commonly applied when the momentum correction coefficient is assumed to be different from one.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0250}, url = {http://global-sci.org/intro/article_detail/cicp/23457.html} }The momentum correction coefficient in one-dimensional blood flow models is related to the prescribed velocity profile. The exact solution of the Riemann problem for the one-dimensional blood flow equations has been previously studied only for a momentum correction coefficient equal to one (corresponding to a flat velocity profile, i.e. an inviscid fluid). In this paper we solve exactly the Riemann problem for the non-linear hyperbolic one-dimensional blood flow equations with a general constant momentum correction coefficient and a tube law that allows to describe both arteries and veins with continuous or discontinuous mechanical and geometrical properties. In the case of discontinuous properties, only the subsonic regime is considered. We propose a numerical procedure to compute the obtained exact solution and finally we validate it numerically, by comparing exact solutions to those obtained with well-known, first order, numerical schemes on a carefully designed set of test problems. A detailed knowledge about this problem will allow to determine coupling and boundary conditions arising when these models are applied on networks of vessels, ensuring full consistency with the underlying one-dimensional blood flow model without resorting to linearization techniques commonly applied when the momentum correction coefficient is assumed to be different from one.