- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 36 (2024), pp. 248-273.
Published online: 2024-07
Cited by
- BibTex
- RIS
- TXT
A moving mesh finite element method is studied for the numerical solution of Bernoulli free boundary problems. The method is based on the pseudo-transient continuation with which a moving boundary problem is constructed and its steady-state solution is taken as the solution of the underlying Bernoulli free boundary problem. The moving boundary problem is solved in a split manner at each time step: the moving boundary is updated with the Euler scheme, the interior mesh points are moved using a moving mesh method, and the corresponding initial-boundary value problem is solved using the linear finite element method. The method can take full advantages of both the pseudo-transient continuation and the moving mesh method. Particularly, it is able to move the mesh, free of tangling, to fit the varying domain for a variety of geometries no matter if they are convex or concave. Moreover, it is convergent towards steady state for a broad class of free boundary problems and initial guesses of the free boundary. Numerical examples for Bernoulli free boundary problems with constant and non-constant Bernoulli conditions and for nonlinear free boundary problems are presented to demonstrate the accuracy and robustness of the method and its ability to deal with various geometries and nonlinearities.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0214}, url = {http://global-sci.org/intro/article_detail/cicp/23303.html} }A moving mesh finite element method is studied for the numerical solution of Bernoulli free boundary problems. The method is based on the pseudo-transient continuation with which a moving boundary problem is constructed and its steady-state solution is taken as the solution of the underlying Bernoulli free boundary problem. The moving boundary problem is solved in a split manner at each time step: the moving boundary is updated with the Euler scheme, the interior mesh points are moved using a moving mesh method, and the corresponding initial-boundary value problem is solved using the linear finite element method. The method can take full advantages of both the pseudo-transient continuation and the moving mesh method. Particularly, it is able to move the mesh, free of tangling, to fit the varying domain for a variety of geometries no matter if they are convex or concave. Moreover, it is convergent towards steady state for a broad class of free boundary problems and initial guesses of the free boundary. Numerical examples for Bernoulli free boundary problems with constant and non-constant Bernoulli conditions and for nonlinear free boundary problems are presented to demonstrate the accuracy and robustness of the method and its ability to deal with various geometries and nonlinearities.