- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 36 (2024), pp. 1-29.
Published online: 2024-07
Cited by
- BibTex
- RIS
- TXT
The accuracy and efficiency of numerical methods are hot topics in computational fluid dynamics. In the previous work [J. Comput. Phys. 355 (2018) 385] of Du et al., a two-stage fourth order ($S_2O_4$) numerical scheme for hyperbolic conservation laws is proposed, which is based on dimension-by-dimensional HWENO5 and WENO5 reconstructions and GRP solver, and uses a $S_2O_4$ time-stepping framework. In this paper, we aim to design a new type of $S_2O_4$ finite volume scheme, to further improve the compactness and efficiency of the numerical scheme. We design an improved $S_2O_4$ framework for two-dimensional compressible Euler equations, and develop nonlinear compact Hermite reconstructions to avoid oscillations near discontinuities. The new two-stage fourth order numerical schemes based on the above nonlinear compact Hermite reconstructions and GRP solver are high-order, stable, compact, efficient and essentially non-oscillatory. In addition, the above reconstructions and the corresponding numerical schemes are extended to eighth-order accuracy in space, and can be theoretically extended to any even-order accuracy. Finally, we present a large number of numerical examples to verify the excellent performance of the designed numerical schemes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2024-0023}, url = {http://global-sci.org/intro/article_detail/cicp/23295.html} }The accuracy and efficiency of numerical methods are hot topics in computational fluid dynamics. In the previous work [J. Comput. Phys. 355 (2018) 385] of Du et al., a two-stage fourth order ($S_2O_4$) numerical scheme for hyperbolic conservation laws is proposed, which is based on dimension-by-dimensional HWENO5 and WENO5 reconstructions and GRP solver, and uses a $S_2O_4$ time-stepping framework. In this paper, we aim to design a new type of $S_2O_4$ finite volume scheme, to further improve the compactness and efficiency of the numerical scheme. We design an improved $S_2O_4$ framework for two-dimensional compressible Euler equations, and develop nonlinear compact Hermite reconstructions to avoid oscillations near discontinuities. The new two-stage fourth order numerical schemes based on the above nonlinear compact Hermite reconstructions and GRP solver are high-order, stable, compact, efficient and essentially non-oscillatory. In addition, the above reconstructions and the corresponding numerical schemes are extended to eighth-order accuracy in space, and can be theoretically extended to any even-order accuracy. Finally, we present a large number of numerical examples to verify the excellent performance of the designed numerical schemes.