- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 35 (2024), pp. 1073-1119.
Published online: 2024-05
Cited by
- BibTex
- RIS
- TXT
We propose a linear decoupled positivity-preserving scheme for the chemotaxis-fluid system, which models the interaction between aerobic bacteria and the fluid flow surrounding them. This scheme comprises the finite element method (FEM) for the fluid equations on a regular triangulation and an upwind finite volume method (FVM) for the chemotaxis system on two types of dual mesh. The discrete cellular density and chemical concentration are represented as the piecewise constant functions on the dual mesh. They can also be equivalently expressed as the piecewise linear functions on the triangulation in the sense of mass-lumping. These discrete solutions are obtained by the upwind finite volume approximation satisfying the laws of positivity preservation and mass conservation. The finite element method is used to compute the numerical velocity in the triangulation, which is then used to determine the upwind-style numerical flux in the dual mesh. We analyze the $M$-property of the matrices from the discrete system and prove the well-posedness and the positivity-preserving property. By using the $L^p$-estimate of the discrete Laplace operators, semigroup analysis, and induction method, we are able to establish the optimal error estimates for chemical concentration, cellular density, and velocity field in $(l^∞(W^{1,p}), l^∞(L^p),l^∞(W^{1,p}))$-norm. Several numerical examples are presented to verify the theoretical results.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0309}, url = {http://global-sci.org/intro/article_detail/cicp/23095.html} }We propose a linear decoupled positivity-preserving scheme for the chemotaxis-fluid system, which models the interaction between aerobic bacteria and the fluid flow surrounding them. This scheme comprises the finite element method (FEM) for the fluid equations on a regular triangulation and an upwind finite volume method (FVM) for the chemotaxis system on two types of dual mesh. The discrete cellular density and chemical concentration are represented as the piecewise constant functions on the dual mesh. They can also be equivalently expressed as the piecewise linear functions on the triangulation in the sense of mass-lumping. These discrete solutions are obtained by the upwind finite volume approximation satisfying the laws of positivity preservation and mass conservation. The finite element method is used to compute the numerical velocity in the triangulation, which is then used to determine the upwind-style numerical flux in the dual mesh. We analyze the $M$-property of the matrices from the discrete system and prove the well-posedness and the positivity-preserving property. By using the $L^p$-estimate of the discrete Laplace operators, semigroup analysis, and induction method, we are able to establish the optimal error estimates for chemical concentration, cellular density, and velocity field in $(l^∞(W^{1,p}), l^∞(L^p),l^∞(W^{1,p}))$-norm. Several numerical examples are presented to verify the theoretical results.