- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 35 (2024), pp. 1003-1028.
Published online: 2024-05
Cited by
- BibTex
- RIS
- TXT
This paper proposes and analyzes a novel fully discrete finite element scheme with an interpolation operator for stochastic Cahn-Hilliard equations with functional-type noise. The nonlinear term satisfies a one-sided Lipschitz condition and the diffusion term is globally Lipschitz continuous. The novelties of this paper are threefold. Firstly, the $L^2$-stability ($L^∞$ in time) and $H^2$-stability ($L^2$ in time) are proved for the proposed scheme. The idea is to utilize the special structure of the matrix assembled by the nonlinear term. None of these stability results has been proved for the fully implicit scheme in existing literature due to the difficulty arising from the interaction of the nonlinearity and the multiplicative noise. Secondly, higher moment stability in $L^2$-norm of the discrete solution is established based on the previous stability results. Thirdly, the Hölder continuity in time for the strong solution is established under the minimum assumption of the strong solution. Based on these findings, the strong convergence in $H^{−1}$-norm of the discrete solution is discussed. Several numerical experiments including stability and convergence are also presented to validate our theoretical results.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0172}, url = {http://global-sci.org/intro/article_detail/cicp/23092.html} }This paper proposes and analyzes a novel fully discrete finite element scheme with an interpolation operator for stochastic Cahn-Hilliard equations with functional-type noise. The nonlinear term satisfies a one-sided Lipschitz condition and the diffusion term is globally Lipschitz continuous. The novelties of this paper are threefold. Firstly, the $L^2$-stability ($L^∞$ in time) and $H^2$-stability ($L^2$ in time) are proved for the proposed scheme. The idea is to utilize the special structure of the matrix assembled by the nonlinear term. None of these stability results has been proved for the fully implicit scheme in existing literature due to the difficulty arising from the interaction of the nonlinearity and the multiplicative noise. Secondly, higher moment stability in $L^2$-norm of the discrete solution is established based on the previous stability results. Thirdly, the Hölder continuity in time for the strong solution is established under the minimum assumption of the strong solution. Based on these findings, the strong convergence in $H^{−1}$-norm of the discrete solution is discussed. Several numerical experiments including stability and convergence are also presented to validate our theoretical results.