- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 35 (2024), pp. 693-723.
Published online: 2024-04
Cited by
- BibTex
- RIS
- TXT
In this paper, we present two novel Asymptotic-Preserving Neural Networks (APNNs) for tackling multiscale time-dependent kinetic problems, encompassing the linear transport equation and Bhatnagar-Gross-Krook (BGK) equation in all ranges of Knudsen number. Our primary objective is to devise accurate APNN approaches for resolving multiscale kinetic equations, which is also efficient in the small Knudsen number regime. The first APNN for linear transport equation is based on even-odd decomposition, which relaxes the stringent conservation prerequisites while concurrently introducing an auxiliary deep neural network. We conclude that enforcing the initial condition for the linear transport equation with inflow boundary conditions is crucial for this network. For the Boltzmann-BGK equation, the APNN incorporates the conservation of mass, momentum, and total energy into the APNN framework as well as exact boundary conditions. A notable finding of this study is that approximating the zeroth, first, and second moments—which govern the conservation of density, momentum, and energy for the Boltzmann-BGK equation, is simpler than the distribution itself. Another interesting phenomenon observed in the training process is that the convergence of density is swifter than that of momentum and energy. Finally, we investigate several benchmark problems to demonstrate the efficacy of our proposed APNN methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0211}, url = {http://global-sci.org/intro/article_detail/cicp/23057.html} }In this paper, we present two novel Asymptotic-Preserving Neural Networks (APNNs) for tackling multiscale time-dependent kinetic problems, encompassing the linear transport equation and Bhatnagar-Gross-Krook (BGK) equation in all ranges of Knudsen number. Our primary objective is to devise accurate APNN approaches for resolving multiscale kinetic equations, which is also efficient in the small Knudsen number regime. The first APNN for linear transport equation is based on even-odd decomposition, which relaxes the stringent conservation prerequisites while concurrently introducing an auxiliary deep neural network. We conclude that enforcing the initial condition for the linear transport equation with inflow boundary conditions is crucial for this network. For the Boltzmann-BGK equation, the APNN incorporates the conservation of mass, momentum, and total energy into the APNN framework as well as exact boundary conditions. A notable finding of this study is that approximating the zeroth, first, and second moments—which govern the conservation of density, momentum, and energy for the Boltzmann-BGK equation, is simpler than the distribution itself. Another interesting phenomenon observed in the training process is that the convergence of density is swifter than that of momentum and energy. Finally, we investigate several benchmark problems to demonstrate the efficacy of our proposed APNN methods.