- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 35 (2024), pp. 369-394.
Published online: 2024-03
Cited by
- BibTex
- RIS
- TXT
We present a second-order strictly length-preserving and unconditionally energy-stable rotational discrete gradient (Rdg) scheme for the numerical approximation of the Oseen-Frank gradient flows with anisotropic elastic energy functional. Two essential ingredients of the Rdg method are reformulation of the length constrained gradient flow into an unconstrained rotational form and discrete gradient discretization for the energy variation. Besides the well-known mean-value and Gonzalez discrete gradients, we propose a novel Oseen-Frank discrete gradient, specifically designed for the solution of Oseen-Frank gradient flow. We prove that the proposed Oseen-Frank discrete gradient satisfies the energy difference relation, thus the resultant Rdg scheme is energy stable. Numerical experiments demonstrate the efficiency and accuracy of the proposed Rdg method and its capability for providing reliable simulation results with highly disparate elastic coefficients.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0191}, url = {http://global-sci.org/intro/article_detail/cicp/22944.html} }We present a second-order strictly length-preserving and unconditionally energy-stable rotational discrete gradient (Rdg) scheme for the numerical approximation of the Oseen-Frank gradient flows with anisotropic elastic energy functional. Two essential ingredients of the Rdg method are reformulation of the length constrained gradient flow into an unconstrained rotational form and discrete gradient discretization for the energy variation. Besides the well-known mean-value and Gonzalez discrete gradients, we propose a novel Oseen-Frank discrete gradient, specifically designed for the solution of Oseen-Frank gradient flow. We prove that the proposed Oseen-Frank discrete gradient satisfies the energy difference relation, thus the resultant Rdg scheme is energy stable. Numerical experiments demonstrate the efficiency and accuracy of the proposed Rdg method and its capability for providing reliable simulation results with highly disparate elastic coefficients.