- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 34 (2023), pp. 456-502.
Published online: 2023-09
Cited by
- BibTex
- RIS
- TXT
The DDFV (Discrete Duality Finite Volume) method is a finite volume scheme mainly dedicated to diffusion problems, with some outstanding properties. This scheme has been found to be one of the most accurate finite volume methods for diffusion problems. In the present paper, we propose a new monotonic extension of DDFV, which can handle discontinuous tensorial diffusion coefficient. Moreover, we compare its performance to a diamond type method with an original interpolation method relying on polynomial reconstructions. Monotonicity is achieved by adapting the method of Gao et al [A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes] to our schemes. Such a technique does not require the positiveness of the secondary unknowns. We show that the two new methods are second-order accurate and are indeed monotonic on some challenging benchmarks as a Fokker-Planck problem.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0081}, url = {http://global-sci.org/intro/article_detail/cicp/21975.html} }The DDFV (Discrete Duality Finite Volume) method is a finite volume scheme mainly dedicated to diffusion problems, with some outstanding properties. This scheme has been found to be one of the most accurate finite volume methods for diffusion problems. In the present paper, we propose a new monotonic extension of DDFV, which can handle discontinuous tensorial diffusion coefficient. Moreover, we compare its performance to a diamond type method with an original interpolation method relying on polynomial reconstructions. Monotonicity is achieved by adapting the method of Gao et al [A finite volume element scheme with a monotonicity correction for anisotropic diffusion problems on general quadrilateral meshes] to our schemes. Such a technique does not require the positiveness of the secondary unknowns. We show that the two new methods are second-order accurate and are indeed monotonic on some challenging benchmarks as a Fokker-Planck problem.