- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 34 (2023), pp. 173-207.
Published online: 2023-08
Cited by
- BibTex
- RIS
- TXT
In rarefied gas flows, the spatial grid size could vary by several orders of magnitude in a single flow configuration (e.g., inside the Knudsen layer it is at the order of mean free path of gas molecules, while in the bulk region it is at a much larger hydrodynamic scale). Therefore, efficient implicit numerical method is urgently needed for time-dependent problems. However, the integro-differential nature of gas kinetic equations poses a grand challenge, as the gain part of the collision operator is non-invertible. Hence an iterative solver is required in each time step, which usually takes a lot of iterations in the (near) continuum flow regime where the Knudsen number is small; worse still, the solution does not asymptotically preserve the fluid dynamic limit when the spatial cell size is not refined enough. Based on the general synthetic iteration scheme for steady-state solution of the Boltzmann equation, we propose two numerical schemes to push the multiscale simulation of unsteady rarefied gas flows to a new boundary, that is, the numerical solution not only converges within dozens of iterations in each time step, but also asymptotically preserves the Navier-Stokes-Fourier limit in the continuum flow regime, when the spatial grid is coarse, and the time step is large (e.g., in simulating the extreme slow decay of two-dimensional Taylor vortex, the time step is even at the order of vortex decay time). The properties of fast convergence and asymptotic preserving of the proposed schemes are not only rigorously proven by the Fourier stability analysis for simplified gas kinetic models, but also demonstrated by several numerical examples for the gas kinetic models and the Boltzmann equation.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2023-0068}, url = {http://global-sci.org/intro/article_detail/cicp/21884.html} }In rarefied gas flows, the spatial grid size could vary by several orders of magnitude in a single flow configuration (e.g., inside the Knudsen layer it is at the order of mean free path of gas molecules, while in the bulk region it is at a much larger hydrodynamic scale). Therefore, efficient implicit numerical method is urgently needed for time-dependent problems. However, the integro-differential nature of gas kinetic equations poses a grand challenge, as the gain part of the collision operator is non-invertible. Hence an iterative solver is required in each time step, which usually takes a lot of iterations in the (near) continuum flow regime where the Knudsen number is small; worse still, the solution does not asymptotically preserve the fluid dynamic limit when the spatial cell size is not refined enough. Based on the general synthetic iteration scheme for steady-state solution of the Boltzmann equation, we propose two numerical schemes to push the multiscale simulation of unsteady rarefied gas flows to a new boundary, that is, the numerical solution not only converges within dozens of iterations in each time step, but also asymptotically preserves the Navier-Stokes-Fourier limit in the continuum flow regime, when the spatial grid is coarse, and the time step is large (e.g., in simulating the extreme slow decay of two-dimensional Taylor vortex, the time step is even at the order of vortex decay time). The properties of fast convergence and asymptotic preserving of the proposed schemes are not only rigorously proven by the Fourier stability analysis for simplified gas kinetic models, but also demonstrated by several numerical examples for the gas kinetic models and the Boltzmann equation.