- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 1466-1508.
Published online: 2023-06
Cited by
- BibTex
- RIS
- TXT
In this paper, we study three families of $C^m (m=0,1,2)$ finite element methods for one dimensional fourth-order equations. They include $C^0$ and $C^1$ Galerkin methods and a $C^2-C^0$ Petrov-Galerkin method. Existence, uniqueness and optimal error estimates of the numerical solution are established. A unified approach is proposed to study the superconvergence property of these methods. We prove that, for $k$th-order elements, the $C^0$ and $C^1$ finite element solutions and their derivative are superconvergent with rate $h^{2k−2} (k≥3)$ at all mesh nodes; while the solution of the $C^2-C^0$ Petrov-Galerkin method and its first- and second-order derivatives are superconvergent with rate $h^{2k−4} (k≥5)$ at all mesh nodes. Furthermore, interior superconvergence points for the $l$-${\rm th} (0≤l≤m+1)$ derivate approximations are also discovered, which are identified as roots of special Jacobi polynomials, Lobatto points, and Gauss points. As a by-product, we prove that the $C^m$ finite element solution is superconvergent towards a particular Jacobi projection of the exact solution in the $H^l (0≤ l ≤ m+1)$ norms. All theoretical findings are confirmed by numerical experiments.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0311}, url = {http://global-sci.org/intro/article_detail/cicp/21768.html} }In this paper, we study three families of $C^m (m=0,1,2)$ finite element methods for one dimensional fourth-order equations. They include $C^0$ and $C^1$ Galerkin methods and a $C^2-C^0$ Petrov-Galerkin method. Existence, uniqueness and optimal error estimates of the numerical solution are established. A unified approach is proposed to study the superconvergence property of these methods. We prove that, for $k$th-order elements, the $C^0$ and $C^1$ finite element solutions and their derivative are superconvergent with rate $h^{2k−2} (k≥3)$ at all mesh nodes; while the solution of the $C^2-C^0$ Petrov-Galerkin method and its first- and second-order derivatives are superconvergent with rate $h^{2k−4} (k≥5)$ at all mesh nodes. Furthermore, interior superconvergence points for the $l$-${\rm th} (0≤l≤m+1)$ derivate approximations are also discovered, which are identified as roots of special Jacobi polynomials, Lobatto points, and Gauss points. As a by-product, we prove that the $C^m$ finite element solution is superconvergent towards a particular Jacobi projection of the exact solution in the $H^l (0≤ l ≤ m+1)$ norms. All theoretical findings are confirmed by numerical experiments.