- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 1409-1431.
Published online: 2023-06
Cited by
- BibTex
- RIS
- TXT
Fast and accurate MRI reconstruction is a key concern in modern clinical practice. Recently, numerous Deep-Learning methods have been proposed for MRI reconstruction, however, they usually fail to reconstruct sharp details from the subsampled $k$-space data. To solve this problem, we propose a lightweight and accurate Edge Attention MRI Reconstruction Network (EAMRI) to reconstruct images with edge guidance. Specifically, we design an efficient Edge Prediction Network to directly predict accurate edges from the blurred image. Meanwhile, we propose a novel Edge Attention Module (EAM) to guide the image reconstruction utilizing the extracted edge priors, as inspired by the popular self-attention mechanism. EAM first projects the input image and edges into ${\rm Q_{image}},$ ${\rm K_{edge}},$ and ${\rm V_{image}},$ respectively. Then EAM pairs the ${\rm Q_{image}}$ with ${\rm K_{edge}}$ along the channel dimension, such that 1) it can search globally for the high-frequency image features that are activated by the edge priors; 2) the overall computation burdens are largely reduced compared with the traditional spatial-wise attention. With the help of EAM, the predicted edge priors can effectively guide the model to reconstruct high-quality MR images with accurate edges. Extensive experiments show that our proposed EAMRI outperforms other methods with fewer parameters and can recover more accurate edges.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0309}, url = {http://global-sci.org/intro/article_detail/cicp/21766.html} }Fast and accurate MRI reconstruction is a key concern in modern clinical practice. Recently, numerous Deep-Learning methods have been proposed for MRI reconstruction, however, they usually fail to reconstruct sharp details from the subsampled $k$-space data. To solve this problem, we propose a lightweight and accurate Edge Attention MRI Reconstruction Network (EAMRI) to reconstruct images with edge guidance. Specifically, we design an efficient Edge Prediction Network to directly predict accurate edges from the blurred image. Meanwhile, we propose a novel Edge Attention Module (EAM) to guide the image reconstruction utilizing the extracted edge priors, as inspired by the popular self-attention mechanism. EAM first projects the input image and edges into ${\rm Q_{image}},$ ${\rm K_{edge}},$ and ${\rm V_{image}},$ respectively. Then EAM pairs the ${\rm Q_{image}}$ with ${\rm K_{edge}}$ along the channel dimension, such that 1) it can search globally for the high-frequency image features that are activated by the edge priors; 2) the overall computation burdens are largely reduced compared with the traditional spatial-wise attention. With the help of EAM, the predicted edge priors can effectively guide the model to reconstruct high-quality MR images with accurate edges. Extensive experiments show that our proposed EAMRI outperforms other methods with fewer parameters and can recover more accurate edges.