- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 937-961.
Published online: 2023-05
Cited by
- BibTex
- RIS
- TXT
We present a new family of fourth-order splitting methods with positive coefficients especially tailored for the time integration of linear parabolic problems and, in particular, for the time dependent Schrödinger equation, both in real and imaginary time. They are based on the use of a double commutator and a modified processor, and are more efficient than other widely used schemes found in the literature. Moreover, for certain potentials, they achieve order six. Several examples in one, two and three dimensions clearly illustrate the computational advantages of the new schemes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0247}, url = {http://global-sci.org/intro/article_detail/cicp/21665.html} }We present a new family of fourth-order splitting methods with positive coefficients especially tailored for the time integration of linear parabolic problems and, in particular, for the time dependent Schrödinger equation, both in real and imaginary time. They are based on the use of a double commutator and a modified processor, and are more efficient than other widely used schemes found in the literature. Moreover, for certain potentials, they achieve order six. Several examples in one, two and three dimensions clearly illustrate the computational advantages of the new schemes.