- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 824-848.
Published online: 2023-04
Cited by
- BibTex
- RIS
- TXT
We propose a clustering-based approach for identifying coherent flow structures in continuous dynamical systems. We first treat a particle trajectory over a finite time interval as a high-dimensional data point and then cluster these data from different initial locations into groups. The method then uses the normalized standard deviation or mean absolute deviation to quantify the deformation. Unlike the usual finite-time Lyapunov exponent (FTLE), the proposed algorithm considers the complete traveling history of the particles. We also suggest two extensions of the method. To improve the computational efficiency, we develop an adaptive approach that constructs different subsamples of the whole particle trajectory based on a finite time interval. To start the computation in parallel to the flow trajectory data collection, we also develop an on-the-fly approach to improve the solution as we continue to provide more measurements for the algorithm. The method can efficiently compute the WCVE over a different time interval by modifying the available data points.
}, issn = {1991-7120}, doi = {https://doi.org/ 10.4208/cicp.OA-2022-0177}, url = {http://global-sci.org/intro/article_detail/cicp/21661.html} }We propose a clustering-based approach for identifying coherent flow structures in continuous dynamical systems. We first treat a particle trajectory over a finite time interval as a high-dimensional data point and then cluster these data from different initial locations into groups. The method then uses the normalized standard deviation or mean absolute deviation to quantify the deformation. Unlike the usual finite-time Lyapunov exponent (FTLE), the proposed algorithm considers the complete traveling history of the particles. We also suggest two extensions of the method. To improve the computational efficiency, we develop an adaptive approach that constructs different subsamples of the whole particle trajectory based on a finite time interval. To start the computation in parallel to the flow trajectory data collection, we also develop an on-the-fly approach to improve the solution as we continue to provide more measurements for the algorithm. The method can efficiently compute the WCVE over a different time interval by modifying the available data points.