- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 764-794.
Published online: 2023-04
Cited by
- BibTex
- RIS
- TXT
This paper presents a fourth-order Cartesian grid based boundary integral method (BIM) for heterogeneous interface problems in two and three dimensional space, where the problem interfaces are irregular and can be explicitly given by parametric curves or implicitly defined by level set functions. The method reformulates the governing equation with interface conditions into boundary integral equations (BIEs) and reinterprets the involved integrals as solutions to some simple interface problems in an extended regular region. Solution of the simple equivalent interface problems for integral evaluation relies on a fourth-order finite difference method with an FFT-based fast elliptic solver. The structure of the coefficient matrix is preserved even with the existence of the interface. In the whole calculation process, analytical expressions of Green’s functions are never determined, formulated or computed. This is the novelty of the proposed kernel-free boundary integral (KFBI) method. Numerical experiments in both two and three dimensions are shown to demonstrate the algorithm efficiency and solution accuracy even for problems with a large diffusion coefficient ratio.
}, issn = {1991-7120}, doi = {https://doi.org/ 10.4208/cicp.OA-2022-0236}, url = {http://global-sci.org/intro/article_detail/cicp/21659.html} }This paper presents a fourth-order Cartesian grid based boundary integral method (BIM) for heterogeneous interface problems in two and three dimensional space, where the problem interfaces are irregular and can be explicitly given by parametric curves or implicitly defined by level set functions. The method reformulates the governing equation with interface conditions into boundary integral equations (BIEs) and reinterprets the involved integrals as solutions to some simple interface problems in an extended regular region. Solution of the simple equivalent interface problems for integral evaluation relies on a fourth-order finite difference method with an FFT-based fast elliptic solver. The structure of the coefficient matrix is preserved even with the existence of the interface. In the whole calculation process, analytical expressions of Green’s functions are never determined, formulated or computed. This is the novelty of the proposed kernel-free boundary integral (KFBI) method. Numerical experiments in both two and three dimensions are shown to demonstrate the algorithm efficiency and solution accuracy even for problems with a large diffusion coefficient ratio.