- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 568-595.
Published online: 2023-03
Cited by
- BibTex
- RIS
- TXT
The weak Galerkin (WG) method is a nonconforming numerical method for solving partial differential equations. In this paper, we introduce the WG method for elliptic equations with Newton boundary condition in bounded domains. The Newton boundary condition is a nonlinear boundary condition arising from science and engineering applications. We prove the well-posedness of the WG scheme by the monotone operator theory and the embedding inequality of weak finite element functions. The error estimates are derived. Numerical experiments are presented to verify the theoretical analysis.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0138}, url = {http://global-sci.org/intro/article_detail/cicp/21500.html} }The weak Galerkin (WG) method is a nonconforming numerical method for solving partial differential equations. In this paper, we introduce the WG method for elliptic equations with Newton boundary condition in bounded domains. The Newton boundary condition is a nonlinear boundary condition arising from science and engineering applications. We prove the well-posedness of the WG scheme by the monotone operator theory and the embedding inequality of weak finite element functions. The error estimates are derived. Numerical experiments are presented to verify the theoretical analysis.